The following Table summarizes the existing and the innovative Indirect Additive Manufacturing / Production processes where SLA, DLP, LCD and Inkjet 3D printing technologies are used:

 

3D resin

Process

Product

Properties

Benefits

Limitations

Castable 3D resins

Direct investment Casting  DC

Metal cast objects

Typical properties of Cast Metals

Cost effective direct investment casting of metal objects

Most castable competitor's 3D resins suffer from imperfections of fine detail finishes

Non Castable  3D resins

Indirect investment casting IC

Metal cast objects

Typical properties of Cast metals

 

Less cost effective indirect investment casting production of metal objects  with very high resolution Slower process since there are several time consuming production steps
Durable injection molding 3D resins Direct plastic, and sintering ceramic, metal, polymer (such as polyimide),  and exotic powder feedstock injection in 3D printed durable injection molds Plastics, ceramics, metals, polymers, and exotic materials Properties of plastics, ceramics, metals, polymers, and exotic materials Cost effective production of durable injection molds for simple shaped plastic, ceramic, metal, polymer, and exotic material injection Not suitable for complex intertwined shapes
Easy breakable sacrificial 3D resins Direct plastic injection in 3D printed easy breakable sacrificial molds Soft plastic, rubber or silicone objects Properties of soft plastics, rubbers, and silicones

Cost effective production of easy breakable sacrificial molds* for complex shaped soft plastic, rubber and silicone injection molding

Not needed for simple 3d printed shapes, mold is lost during production
Water soluble sacrificial 3D resins (also solvent soluble grades) Direct plastic, and sintering ceramic, metal, polymer (such as polyimide),  and exotic powder feedstock injection in 3D printed sacrificial injection molds Plastics, ceramics, metals, polymers, and exotic materials Properties of plastics, ceramics, metals, polymers, and exotic materials Cost effective production of sacrificial injection molds for complex shaped plastic, ceramic, metal, polymer, and exotic material injection Not needed for simple 3D printed shapes, mold is lost during production


Note: sacrificial molds are needed for making intricate complex shapes where the mold and the injected material are entangled